dc.creatorBelén, Federico
dc.creatorVallese, Federico Danilo
dc.creatorLeist, Lisa G.T.
dc.creatorFerrão Flores, Marco
dc.creatorde Araújo Gomes, Adriano
dc.creatorPistonesi, Marcelo Fabian
dc.date.accessioned2021-10-14T15:45:33Z
dc.date.accessioned2022-10-15T03:35:17Z
dc.date.available2021-10-14T15:45:33Z
dc.date.available2022-10-15T03:35:17Z
dc.date.created2021-10-14T15:45:33Z
dc.date.issued2020-09
dc.identifierBelén, Federico; Vallese, Federico Danilo; Leist, Lisa G.T.; Ferrão Flores, Marco; de Araújo Gomes, Adriano; et al.; Computer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters; Elsevier Science; Microchemical Journal; 157; 9-2020; 1-8; 104916
dc.identifier0026-265X
dc.identifierhttp://hdl.handle.net/11336/143602
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4340674
dc.description.abstractComputer vision-based analytical methods have gained popularity in the literature, digital images and/or movies have been used to build univariate (traditional analytical line) and multivariate models. This paper describes, for the first time to the best of our knowledge, second-order data processing obtained with a computer vision-based analytical device. Therefore, a flow batch assembly coupled whit a drop system to determining arsenic in water samples without chemical/external pretreatment was employed. Arsenic is extracted from the water samples as arsine to react with a drop of silver diethyldithiocarbamate producing a colored complex. The entire reaction is recorded with a digital microscope to obtain videos as a function of time, generating second order data that is subsequently treated with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). The proposed low-cost method exhibits good performance, satisfactory detection limit (0.07 µg L−1) and linear response from 0.05 to 1.00 µg L−1 of As in water samples.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0026265X20305609
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.microc.2020.104916
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectARSENIC
dc.subjectAUTOMATIC SYSTEM
dc.subjectCOMPUTER VISION-BASED ANALYTICAL METHOD
dc.subjectDROP
dc.subjectSECOND ORDER DATA
dc.subjectWATER
dc.titleComputer-vision based second-order (kinetic-color) data generation: arsenic quantitation in natural waters
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución