dc.creatorGambar, Katalin
dc.creatorMarkus, Ferenc
dc.creatorRocca, Mario Carlos
dc.date.accessioned2021-11-05T19:00:18Z
dc.date.accessioned2022-10-15T03:30:22Z
dc.date.available2021-11-05T19:00:18Z
dc.date.available2022-10-15T03:30:22Z
dc.date.created2021-11-05T19:00:18Z
dc.date.issued2020-01
dc.identifierGambar, Katalin; Markus, Ferenc; Rocca, Mario Carlos; A repulsive interaction in the classical electrodynamics; Budapest Tech; Acta Polytechnica Hungarica; 17; 1; 1-2020; 175-189
dc.identifier1785-8860
dc.identifierhttp://hdl.handle.net/11336/146198
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4340277
dc.description.abstractHerein, we introduce an additional term into the induction equation (one of the Maxwell’s equation). The related Lagrangian formalism applying the scalar and vector potentials is fitted to this modified Maxwell’s equations. In the framework of Hamiltons’s principle we are able to deduce Klein-Gordon equations with negative “mass term” for the field variables electric field E and magnetic induction B. We can conclude from the mathematical structure of the equations that a repulsive interaction appears. The Wheeler propagator can be calculated for the present case by which the time evolution of the field can be discussed. In spite of the situation that these equations have tachyon solutions, the results are in line with the causality principle. As a consequence of the theory, a spontaneous charge disjunction process may rise in the field
dc.languageeng
dc.publisherBudapest Tech
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://acta.uni-obuda.hu//Gambar_Rocca_Markus_98.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMaxwell’s equations
dc.subjectKlein-Gordon equation with negative ?mass term?,
dc.subjectLagrangian
dc.subjectcharge distribution
dc.titleA repulsive interaction in the classical electrodynamics
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución