dc.creatorScheffler, Guillermo Federico
dc.creatorRuiz Holgado, Juan Daniel
dc.creatorPulido, Manuel Arturo
dc.date.accessioned2020-12-22T13:03:09Z
dc.date.accessioned2022-10-15T03:17:58Z
dc.date.available2020-12-22T13:03:09Z
dc.date.available2022-10-15T03:17:58Z
dc.date.created2020-12-22T13:03:09Z
dc.date.issued2019-04
dc.identifierScheffler, Guillermo Federico; Ruiz Holgado, Juan Daniel; Pulido, Manuel Arturo; Inference of stochastic parametrizations for model error treatment using nested ensemble Kalman filters; John Wiley & Sons Ltd; Quarterly Journal of the Royal Meteorological Society; 145; 722; 4-2019; 2028-2045
dc.identifier0035-9009
dc.identifierhttp://hdl.handle.net/11336/121017
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4339224
dc.description.abstractStochastic parametrizations are increasingly used to represent the uncertainty associated with model errors in ensemble forecasting and data assimilation. One of the challenges associated with the use of these parametrizations is the characterization of the statistical properties of the stochastic processes within their formulation. In this work, a hierarchical Bayesian approach based on two nested ensemble Kalman filters is proposed for inferring parameters associated with stochastic parametrizations. The proposed technique is based on the Rao-Blackwellization of the parameter estimation problem. It consists of an ensemble of ensemble Kalman filters, each of them using a different set of stochastic parameter values. We show the ability of the technique to infer parameters related to the covariance of stochastic representations of model error in the Lorenz-96 dynamical system. The evaluation is conducted with stochastic twin experiments and with imperfect model experiments with unresolved physics in the forecast model. The technique performs successfully under different model error covariance structures. The technique is conceived to be applied offline as part of an apriori optimization of the data assimilation system and could, in principle, be extended to the estimation of other hyperparameters of the data assimilation system.
dc.languageeng
dc.publisherJohn Wiley & Sons Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/qj.3542
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3542
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHIERARCHICAL KALMAN FILTERS
dc.subjectMODEL ERROR
dc.subjectPARAMETER ESTIMATION
dc.subjectSTOCHASTIC PARAMETRIZATION
dc.titleInference of stochastic parametrizations for model error treatment using nested ensemble Kalman filters
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución