dc.contributorDanielli, Donatella
dc.contributorPetrosyan, Arshak
dc.contributorPop, Camelia A.
dc.creatorde Napoli, Pablo Luis
dc.creatorStinga, Pablo Raul
dc.date.accessioned2021-07-26T16:56:19Z
dc.date.accessioned2022-10-15T03:10:48Z
dc.date.available2021-07-26T16:56:19Z
dc.date.available2022-10-15T03:10:48Z
dc.date.created2021-07-26T16:56:19Z
dc.date.issued2019
dc.identifierde Napoli, Pablo Luis; Stinga, Pablo Raul; Fractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups; American Mathematical Society; 723; 2019; 167-189
dc.identifier978-1-4704-4110-4
dc.identifierhttp://hdl.handle.net/11336/136962
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4338589
dc.description.abstractIn this paper we show novel underlying connections between fractional powers of the Laplacian on the unit sphere and functions from analytic number theory and differential geometry, like the Hurwitz zeta function and the Minakshisundaram zeta function. Inspired by Minakshisundaram’s ideas, we find a precise pointwise description of (−∆Sn−1 ) su(x) in terms of fractional powers of the Dirichlet-to-Neumann map on the sphere. The Poisson kernel for the unit ball will be essential for this part of the analysis. On the other hand, by using the heat semigroup on the sphere, additional pointwise integrodifferential formulas are obtained. Finally, we prove a characterization with a local extension problem and the interior Harnack inequality.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.ams.org/books/conm/723/
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/conm/723
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceNew Developments in the Analysis of Nonlocal Operators (in the series: Contemporary Mathematics)
dc.subjectFRACTIONAL LAPLACIAN ON THE SPHERE
dc.subjectZETA FUNCTION
dc.subjectMETHOD OF SEMIGROUPS
dc.subjectSPHERICAL HARMONICS
dc.subjectHARNACK INEQUALITY
dc.titleFractional Laplacians on the sphere, the Minakshisundaram zeta function and semigroups
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/bookPart
dc.typeinfo:ar-repo/semantics/parte de libro


Este ítem pertenece a la siguiente institución