dc.creatorCardeccia, Rodrigo Alejandro
dc.creatorMuro, Luis Santiago Miguel
dc.date.accessioned2020-01-08T15:47:00Z
dc.date.accessioned2022-10-15T03:06:55Z
dc.date.available2020-01-08T15:47:00Z
dc.date.available2022-10-15T03:06:55Z
dc.date.created2020-01-08T15:47:00Z
dc.date.issued2018-02
dc.identifierCardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Hypercyclic homogeneous polynomials on H(C); Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 226; 2-2018; 60-72
dc.identifier0021-9045
dc.identifierhttp://hdl.handle.net/11336/93951
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4338245
dc.description.abstractIt is known that homogeneous polynomials on Banach spaces cannot be hypercyclic, but there are examples of hypercyclic homogeneous polynomials on some non-normable Fréchet spaces. We show the existence of hypercyclic polynomials on H(C), by exhibiting a concrete polynomial which is also the first example of a frequently hypercyclic homogeneous polynomial on any F-space. We prove that the homogeneous polynomial on H(C) defined as the product of a translation operator and the evaluation at 0 is mixing, frequently hypercyclic and chaotic. We prove, in contrast, that some natural related polynomials fail to be hypercyclic.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jat.2017.09.005
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021904517301193
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1703.04773
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectENTIRE FUNCTIONS
dc.subjectFREQUENTLY HYPERCYCLIC OPERATORS
dc.subjectHOMOGENEOUS POLYNOMIALS
dc.subjectUNIVERSAL FUNCTIONS
dc.titleHypercyclic homogeneous polynomials on H(C)
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución