dc.contributorMehdi Khosrow Pour, D.B.A.
dc.creatorRodriguez, Juan Manuel
dc.creatorZunino Suarez, Alejandro Octavio
dc.creatorTommasel, Antonela
dc.creatorMateos Diaz, Cristian Maximiliano
dc.date.accessioned2021-11-29T10:55:49Z
dc.date.accessioned2022-10-15T02:59:33Z
dc.date.available2021-11-29T10:55:49Z
dc.date.available2022-10-15T02:59:33Z
dc.date.created2021-11-29T10:55:49Z
dc.date.issued2017
dc.identifierRodriguez, Juan Manuel; Zunino Suarez, Alejandro Octavio; Tommasel, Antonela; Mateos Diaz, Cristian Maximiliano; Recurrent Neural Networks for Predicting Mobile Device State; IGI Global; 2017; 6658-6670
dc.identifier9781522522553
dc.identifierhttp://hdl.handle.net/11336/147578
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4337649
dc.description.abstractNowadays, mobile devices are ubiquitous in modern life as they allow users to perform virtually any task, from checking e-mails to playing video games. However, many of these operations are conditioned by the state of mobile devices. Therefore, knowing the current state of mobile devices and predicting their future states is a crucial issue in different domains, such as context-aware applications or ad-hoc networking. Several authors have proposed to use different machine learning methods for predicting some aspect of mobile devices´ future states. This work aims at predicting mobile devices´ battery charge, whether it is plugged to A/C, and screen and WiFi state. To fulfil this goal, the current state of a mobile device can be regarded as the consequence of the previous sequence of states, meaning that future states can be predicted by known previous ones. This work focuses on using Recurrent Neural Networks for predicting future states.
dc.languageeng
dc.publisherIGI Global
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.igi-global.com/chapter/recurrent-neural-networks-for-predicting-mobile-device-state/184360
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.sourceEncyclopedia of Information Science and Technology
dc.subjectARTIFICIAL NEURAL NETWORK
dc.subjectEPOCH
dc.subjectERROR FUNCTION
dc.subjectGRADIENT DESCENT
dc.subjectMOBILE DEVICE
dc.subjectMOBILE DEVICE STATE
dc.subjectRECURRENT NEURAL NETWORK
dc.titleRecurrent Neural Networks for Predicting Mobile Device State
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/bookPart
dc.typeinfo:ar-repo/semantics/parte de libro


Este ítem pertenece a la siguiente institución