dc.creatorAllegrini, Franco
dc.creatorOlivieri, Alejandro Cesar
dc.date.accessioned2020-01-17T19:54:22Z
dc.date.accessioned2022-10-15T02:57:55Z
dc.date.available2020-01-17T19:54:22Z
dc.date.available2022-10-15T02:57:55Z
dc.date.created2020-01-17T19:54:22Z
dc.date.issued2013-07
dc.identifierAllegrini, Franco; Olivieri, Alejandro Cesar; An integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration; Elsevier Science; Talanta; 115; 7-2013; 755-760
dc.identifier0039-9140
dc.identifierhttp://hdl.handle.net/11336/95095
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4337536
dc.description.abstractA new optimization strategy for multivariate partial-least-squares (PLS) regression analysis is described. It was achieved by integrating three efficient strategies to improve PLS calibration models: (1) variable selection based on ant colony optimization, (2) mathematical pre-processing selection by a genetic algorithm, and (3) sample selection through a distance-based procedure. Outlier detection has also been included as part of the model optimization. All the above procedures have been combined into a single algorithm, whose aim is to find the best PLS calibration model within a Monte Carlo-type philosophy. Simulated and experimental examples are employed to illustrate the success of the proposed approach.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914013005511
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.talanta.2013.06.051
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectMULTIVARIATE CALIBRATION
dc.subjectOUTLIER DETECTION
dc.subjectPARTIAL LEAST-SQUARES
dc.subjectPRE-PROCESSING SELECTION
dc.subjectSAMPLE SELECTION
dc.subjectVARIABLE SELECTION
dc.titleAn integrated approach to the simultaneous selection of variables, mathematical pre-processing and calibration samples in partial least-squares multivariate calibration
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución