dc.creatorWald, Sascha
dc.creatorArias, Raúl Eduardo
dc.creatorAlba, Vincenzo
dc.date.accessioned2021-10-28T18:44:23Z
dc.date.accessioned2022-10-15T02:57:31Z
dc.date.available2021-10-28T18:44:23Z
dc.date.available2022-10-15T02:57:31Z
dc.date.created2021-10-28T18:44:23Z
dc.date.issued2020-12
dc.identifierWald, Sascha; Arias, Raúl Eduardo; Alba, Vincenzo; Closure of the entanglement gap at quantum criticality: The case of the quantum spherical model; American Physical Society; Physical Review Research; 2; 043404; 12-2020; 1-19
dc.identifier2643-1564
dc.identifierhttp://hdl.handle.net/11336/145397
dc.identifier2643-1564
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4337497
dc.description.abstractThe study of entanglement spectra is a powerful tool to detect or elucidate universal behavior in quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ , i.e., the lowest-laying gap of the entanglement spectrum, at a two-dimensional quantum critical point. We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition and is mappable to free bosons with an additional external constraint. We analytically show that the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a torus and the half-system bipartition, the entanglement gap vanishes as π2/ ln(L), with L the linear system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the transition, although logarithmic corrections prevent a precise verification of the finite-size scaling. Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to a nontrivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively captured by neglecting the structure of the zero-mode eigenvector.
dc.languageeng
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevResearch.2.043404
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevResearch.2.043404
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectENTANGLEMENT SPECTRUM
dc.subjectQUANTUM ENTANGLEMENT
dc.subjectQUANTUM PHASE TRANSITIONS
dc.subjectQUANTUM STATISTICAL MECHANICS
dc.titleClosure of the entanglement gap at quantum criticality: The case of the quantum spherical model
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución