dc.creatorAmster, Pablo Gustavo
dc.creatorKuna, Mariel Paula
dc.creatorDallos Santos, Dionicio Pastor
dc.date.accessioned2021-11-15T23:36:04Z
dc.date.accessioned2022-10-15T02:52:26Z
dc.date.available2021-11-15T23:36:04Z
dc.date.available2022-10-15T02:52:26Z
dc.date.created2021-11-15T23:36:04Z
dc.date.issued2020-05
dc.identifierAmster, Pablo Gustavo; Kuna, Mariel Paula; Dallos Santos, Dionicio Pastor; On the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales; arXiv.org; Cornell University; 1; 5-2020; 1-11
dc.identifier2331-8422
dc.identifierhttp://hdl.handle.net/11336/146952
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4337143
dc.description.abstractWe study some properties of the range of the relativistic pendulum operator P, that is, the set of possible continuous T-periodic forcing terms p for which the equation P x = p admits a T-periodic solution over a T - periodic time scale T. Writing p ( t) = p 0 ( t)+ p, we prove the existence of a compact interval I ( p 0) such that the problem has a solution if and only if p ∈ I ( p 0) and at least two different solutions when p is an interior point. Furthermore, we give sufficient conditions for nondegeneracy; specifically, we prove that if T is small then I ( p 0) is a neighbourhood of 0 for arbitrary p 0. Well known results for the continuous case are generalized to the time scales context.
dc.languageeng
dc.publisherarXiv.org
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2005.12851
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectRELATIVIST PENDULUM
dc.subjectPERIODIC SOLUTIONS
dc.subjectTIME SCALES
dc.subjectDEGENERATE EQUATIONS
dc.titleOn the Solvability of the Periodically Forced Relativistic Pendulum Equation on Time Scales
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución