dc.creatorGalicer, Daniel Eric
dc.creatorMansilla, Martin Ignacio
dc.creatorMuro, Luis Santiago Miguel
dc.date.accessioned2021-09-10T22:32:57Z
dc.date.accessioned2022-10-15T02:35:31Z
dc.date.available2021-09-10T22:32:57Z
dc.date.available2022-10-15T02:35:31Z
dc.date.created2021-09-10T22:32:57Z
dc.date.issued2020-12-11
dc.identifierGalicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; The sup‐norm vs. the norm of the coefficients: equivalence constants for homogeneous polynomials; Wiley VCH Verlag; Mathematische Nachrichten; 293; 2; 11-12-2020; 263-283
dc.identifier0025-584X
dc.identifierhttp://hdl.handle.net/11336/140150
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4335766
dc.description.abstractLet Amp,r(n) be the best constant that fulfills the following inequality: for every m-homogeneous polynomial P(z)=∑|α|=maαzα in n complex variables, (∑|α|=m|aα|r)1/r≤Amp,r(n)supz∈Bℓnp∣∣P(z)∣∣. For every degree m, and a wide range of values of p,r∈[1,∞] (including any r in the case p∈[1,2], and any r and p for the 2-homogeneous case), we give the correct asymptotic behavior of these constants as n (the number of variables) tends to infinity. Remarkably, in many cases, extremal polynomials for these inequalities are not (as traditionally expected) found using classical random unimodular polynomials, and special combinatorial configurations of monomials are needed. Namely, we show that Steiner polynomials (i.e., m-homogeneous polynomials such that the multi-indices corresponding to the nonzero coefficients form partial Steiner systems), do the work for certain range of values of p,r. As a byproduct, we present some applications of these estimates to the interpolation of tensor products of Banach spaces, to the study of (mixed) unconditionality in spaces of polynomials and to the multivariable von Neumann's inequality.
dc.languageeng
dc.publisherWiley VCH Verlag
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/mana.201800404
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/mana.201800404
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1602.01735v3
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHardy-Littlewood inequalities
dc.subjectmultivariable von Neumann?s inequality.
dc.subjectunconditionality in spaces ofpolynomials
dc.subjectunimodular polynomials
dc.titleThe sup‐norm vs. the norm of the coefficients: equivalence constants for homogeneous polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución