Argentina | info:eu-repo/semantics/article
dc.creatorDickenstein, Alicia Marcela
dc.creatorFeichtner, Eva María
dc.creatorSturmfels, Bernd
dc.date.accessioned2022-02-04T01:55:03Z
dc.date.accessioned2022-10-15T02:35:05Z
dc.date.available2022-02-04T01:55:03Z
dc.date.available2022-10-15T02:35:05Z
dc.date.created2022-02-04T01:55:03Z
dc.date.issued2007-12
dc.identifierDickenstein, Alicia Marcela; Feichtner, Eva María; Sturmfels, Bernd; Tropical discriminants; American Mathematical Society; Journal Of The American Mathematical Society; 20; 4; 12-2007; 1111-1133
dc.identifier0894-0347
dc.identifierhttp://hdl.handle.net/11336/151320
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4335719
dc.description.abstractTropical geometry is used to develop a new approach to the theory of discriminants and resultants in the sense of Gelfand, Kapranov and Zelevinsky. The tropical A-discriminant is the tropicalization of the dual variety of the projective toric variety given by an integer matrix A. This tropical algebraic variety is shown to coincide with the Minkowski sum of the row space of A and the tropicalization of the kernel of A. This leads to an explicit positive formula for all the extreme monomials of any A-discriminant.
dc.languageeng
dc.publisherAmerican Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1090/S0894-0347-07-00562-0
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/jams/2007-20-04/S0894-0347-07-00562-0/
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/math/0510126v2
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTROPICAL GEOMETRY
dc.subjectDUAL VARIETY
dc.subjectDISCRIMINANT
dc.titleTropical discriminants
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución