dc.creatorEstrugo, Emiliano Juan José
dc.creatorPastine, Adrián Gabriel
dc.date.accessioned2022-01-27T11:57:28Z
dc.date.accessioned2022-10-15T02:33:38Z
dc.date.available2022-01-27T11:57:28Z
dc.date.available2022-10-15T02:33:38Z
dc.date.created2022-01-27T11:57:28Z
dc.date.issued2021-02
dc.identifierEstrugo, Emiliano Juan José; Pastine, Adrián Gabriel; The number of s-separated k-sets in various circles; Combinatorial Mathematics Society of Australasia; The Australasian Journal of Combinatorics; 79; 3; 2-2021; 424-436
dc.identifier2202-3518
dc.identifierhttp://hdl.handle.net/11336/150796
dc.identifier1034-4942
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4335610
dc.description.abstractThis article studies the number of ways of selecting k objects arranged in p circles of sizes n0,...,np−1 such that no two selected ones have less than s objects between them. If ni ≥ sk + 1 for all 0 ≤ i ≤ p − 1, this number is shown to be n0+...+np−2 k n0+...+np−2−sk−1 k−1 . A combinatorial proof of this claim is provided, and two convolution formulas due to Rothe are obtained as corollaries.
dc.languageeng
dc.publisherCombinatorial Mathematics Society of Australasia
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ajc.maths.uq.edu.au/pdf/79/ajc_v79_p424.pdf
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ajc.maths.uq.edu.au/?page=get_volumes&volume=79
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1805.01562
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectS-Separation
dc.subjectN-Circle
dc.subjectK-Stras in Graphs
dc.subjectK-Sets
dc.titleThe number of s-separated k-sets in various circles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución