dc.creatorPiovan, Luis Amadeo
dc.creatorVanhaecke, Pol
dc.date.accessioned2019-08-05T20:09:17Z
dc.date.accessioned2022-10-15T02:32:18Z
dc.date.available2019-08-05T20:09:17Z
dc.date.available2022-10-15T02:32:18Z
dc.date.created2019-08-05T20:09:17Z
dc.date.issued2000-10
dc.identifierPiovan, Luis Amadeo; Vanhaecke, Pol; Integrable Systems and projective images of Kummer surfaces; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; XXIX; 2; 10-2000; 351-392
dc.identifier0391-173X
dc.identifierhttp://hdl.handle.net/11336/80939
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4335485
dc.description.abstractThe (-1 )-involution on the Jacobian Jr of an arbitrary Riemann surfacer of genus two leads to a singular surface, the Kummer surface Icr of Jr, which,after desingularization, defines a X-3 surface Kr . We consider ample line bundleson Kr coming from the even or odd sections of [n O] with prescribed vanishingat the 2-division points of Jr (0 is the theta divisor of Jr). We use an integrablesystem to show that in the cases we study the linear system is base-point-free,to determine which curves are contracted to singular points and to compute anexplicit equation for the surface in projective space. Our explicit methods applyto the Kummer surface of any Abelian surface, given as the fiber of the momentmap of an algebraic completely integrable system.
dc.languageeng
dc.publisherScuola Normale Superiore
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.numdam.org/article/ASNSP_2000_4_29_2_351_0.pdf
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectINTEGRABLE SYSTEMS
dc.subjectABELIAN SURFACES
dc.subjectKUMMER SURFACES
dc.subjectK 3 SURFACES
dc.titleIntegrable Systems and projective images of Kummer surfaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución