dc.creatorMelo Quintero, Jhon Jaither
dc.creatorRodrÍguez Torres, Claudia Elena
dc.creatorErrico, Leonardo Antonio
dc.date.accessioned2020-01-21T17:37:41Z
dc.date.accessioned2022-10-15T02:21:39Z
dc.date.available2020-01-21T17:37:41Z
dc.date.available2022-10-15T02:21:39Z
dc.date.created2020-01-21T17:37:41Z
dc.date.issued2018-04
dc.identifierMelo Quintero, Jhon Jaither; RodrÍguez Torres, Claudia Elena; Errico, Leonardo Antonio; Ab initio calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe2O4; Elsevier Science Sa; Journal of Alloys and Compounds; 741; 4-2018; 746-755
dc.identifier0925-8388
dc.identifierhttp://hdl.handle.net/11336/95409
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4334551
dc.description.abstractIn this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe2O4, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about KBTF, being KB the Boltzmann constant and TF the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mössbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.
dc.languageeng
dc.publisherElsevier Science Sa
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0925838818302184
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jallcom.2018.01.217
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectZFO
dc.subjectMagnetic behavior
dc.subjectElectronic structure
dc.subjectSpin configuration
dc.titleAb initio calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe2O4
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución