dc.creatorBiagini, Martín
dc.creatorFilipic, Joaquín
dc.creatorMas, Ignacio Agustin
dc.creatorPose, Claudio Daniel
dc.creatorGiribet, Juan Ignacio
dc.creatorParisi, Daniel Ricardo
dc.date.accessioned2021-07-05T20:38:31Z
dc.date.accessioned2022-10-15T02:04:26Z
dc.date.available2021-07-05T20:38:31Z
dc.date.available2022-10-15T02:04:26Z
dc.date.created2021-07-05T20:38:31Z
dc.date.issued2021-08
dc.identifierBiagini, Martín; Filipic, Joaquín; Mas, Ignacio Agustin; Pose, Claudio Daniel; Giribet, Juan Ignacio; et al.; People counting using visible and infrared images; Elsevier Science; Neurocomputing; 450; 25; 8-2021; 25-32
dc.identifier0925-2312
dc.identifierhttp://hdl.handle.net/11336/135487
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4333250
dc.description.abstractWe propose the use of convolutional neural networks (CNN) for counting and positioning people given aerial shots of visible and infrared images. Our data set is entirely made of semi-artificial images created from real photographs taken from a drone using a dual FLIR camera. We compare the performance between the CNNs using 3 (RGB) and 4 (RGB + IR) channels, both under different lighting conditions. The 4-channel network responds better in all situations, particularly in cases of poor visible illumination that can be found in night scenarios. The proposed methodology could be applied to real situations when an extensive data bank of 4-channel images is available.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.neucom.2021.03.089
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0925231221004756
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONVOLUTIONAL NEURAL NETWORK
dc.subjectPEOPLE COUNTING
dc.subjectVISIBLE AND INFRARED IMAGES
dc.titlePeople counting using visible and infrared images
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución