dc.creatorContino, Maximiliano
dc.creatorDi Iorio y Lucero, María Eugenia
dc.creatorFongi, Guillermina
dc.date.accessioned2020-06-08T20:41:19Z
dc.date.accessioned2022-10-15T01:29:56Z
dc.date.available2020-06-08T20:41:19Z
dc.date.available2022-10-15T01:29:56Z
dc.date.created2020-06-08T20:41:19Z
dc.date.issued2019-10
dc.identifierContino, Maximiliano; Di Iorio y Lucero, María Eugenia; Fongi, Guillermina; Global solutions of approximation problems in Hilbert spaces; Taylor & Francis; Linear And Multilinear Algebra; 10-2019; 1-17
dc.identifier0308-1087
dc.identifierhttp://hdl.handle.net/11336/106946
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4330084
dc.description.abstractWe study three well-known minimization problems in Hilbert spaces: the weighted least squares problem and the related problems of abstract splines and smoothing. In each case we analyze the solvability of the problem for every point of the Hilbert space in the corresponding data set, the existence of an operator that maps each data point to its solution in a linear and continuous way and the solvability of the associated operator problem in a fixed p-Schatten norm.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/03081087.2019.1681929
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/03081087.2019.1681929
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1903.06573
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectABSTRACT SPLINE PROBLEMS
dc.subjectSCHATTEN P CLASSES
dc.subjectOPTIMAL INVERSES
dc.titleGlobal solutions of approximation problems in Hilbert spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución