dc.creatorBoubeta, Fernando Martín
dc.creatorContestín García, Rocío María
dc.creatorLorenzo, Ezequiel Norberto
dc.creatorBoechi, Leonardo
dc.creatorEstrin, Dario Ariel
dc.creatorSued, Raquel Mariela
dc.creatorArrar, Mehrnoosh
dc.date.accessioned2021-01-26T13:31:56Z
dc.date.accessioned2022-10-15T01:24:35Z
dc.date.available2021-01-26T13:31:56Z
dc.date.available2022-10-15T01:24:35Z
dc.date.created2021-01-26T13:31:56Z
dc.date.issued2019-01
dc.identifierBoubeta, Fernando Martín; Contestín García, Rocío María; Lorenzo, Ezequiel Norberto; Boechi, Leonardo; Estrin, Dario Ariel; et al.; Lessons learned about steered molecular dynamics simulations and free energy calculations; Wiley Blackwell Publishing, Inc; Chemical Biology & Drug Design; 93; 6; 1-2019; 1129-1138
dc.identifier1747-0277
dc.identifierhttp://hdl.handle.net/11336/123697
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4329608
dc.description.abstractThe calculation of free energy profiles is central in understanding differential enzymatic activity, for instance, involving chemical reactions that require QM-MM tools, ligand migration, and conformational rearrangements that can be modeled using classical potentials. The use of steered molecular dynamics (sMD) together with the Jarzynski equality is a popular approach in calculating free energy profiles. Here, we first briefly review the application of the Jarzynski equality to sMD simulations, then revisit the so-called stiff-spring approximation and the consequent expectation of Gaussian work distributions and, finally, reiterate the practical utility of the second-order cumulant expansion, as it coincides with the parametric maximum-likelihood estimator in this scenario. We illustrate this procedure using simulations of CO, both in aqueous solution and in a carbon nanotube as a model system for biologically relevant nanoheterogeneous environments. We conclude the use of the second-order cumulant expansion permits the use of faster pulling velocities in sMD simulations, without introducing bias due to large dispersion in the non-equilibrium work distribution.
dc.languageeng
dc.publisherWiley Blackwell Publishing, Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/cbdd.13485
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFREE ENERGY
dc.subjectJARZYNSKI
dc.subjectMAXIMUM LIKELIHOOD
dc.subjectSTEERED MOLECULAR DYNAMICS
dc.titleLessons learned about steered molecular dynamics simulations and free energy calculations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución