dc.creatorBura, Efstathia
dc.creatorDuarte, S.
dc.creatorForzani, Liliana Maria
dc.creatorSmucler, Ezequiel
dc.creatorSued, Raquel Mariela
dc.date.accessioned2022-07-15T15:47:38Z
dc.date.accessioned2022-10-15T01:19:38Z
dc.date.available2022-07-15T15:47:38Z
dc.date.available2022-10-15T01:19:38Z
dc.date.created2022-07-15T15:47:38Z
dc.date.issued2018-09
dc.identifierBura, Efstathia; Duarte, S.; Forzani, Liliana Maria; Smucler, Ezequiel; Sued, Raquel Mariela; Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models; Taylor & Francis Ltd; Statistics; 52; 5; 9-2018; 1005-1024
dc.identifier0233-1888
dc.identifierhttp://hdl.handle.net/11336/162204
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4329208
dc.description.abstractReduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/02331888.2018.1467420
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/02331888.2018.1467420
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectEXPONENTIAL FAMILY
dc.subjectM-ESTIMATION
dc.subjectNON-CONVEX
dc.subjectPARAMETER SPACES
dc.subjectRANK RESTRICTION
dc.titleAsymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución