dc.creatorCortiñas, Guillermo Horacio
dc.creatorCuntz, Joachim
dc.creatorMeyer, Ralf
dc.creatorTamme, Georg
dc.date.accessioned2019-11-12T14:17:24Z
dc.date.accessioned2022-10-15T01:16:28Z
dc.date.available2019-11-12T14:17:24Z
dc.date.available2022-10-15T01:16:28Z
dc.date.created2019-11-12T14:17:24Z
dc.date.issued2018-07
dc.identifierCortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Weak completions, bornologies and rigid cohomology; Elsevier Science; Journal Of Geometry And Physics; 129; 7-2018; 192-199
dc.identifier0393-0440
dc.identifierhttp://hdl.handle.net/11336/88596
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4328972
dc.description.abstractLet V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044018301256
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.geomphys.2018.03.005
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectALGEBRAIC GEOMETRY
dc.subjectBORNOLOGICAL ALGEBRAS
dc.subjectCYCLIC HOMOLOGY
dc.subjectOVERCONVERGENT COMPLETIONS
dc.subjectPOSITIVE CHARACTERISTIC
dc.subjectRIGID COHOMOLOGY
dc.titleWeak completions, bornologies and rigid cohomology
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución