dc.creatorLavorato, Gabriel Carlos
dc.creatorDas, Raja
dc.creatorXing, Yutao
dc.creatorRobles, Joshua
dc.creatorLitterst, F. Jochen
dc.creatorBaggio Saitovitch, Elisa
dc.creatorPhan, Manh Huong
dc.creatorSrikanth, Hariharan
dc.date.accessioned2021-09-27T18:12:20Z
dc.date.accessioned2022-10-15T00:53:30Z
dc.date.available2021-09-27T18:12:20Z
dc.date.available2022-10-15T00:53:30Z
dc.date.created2021-09-27T18:12:20Z
dc.date.issued2020-01-29
dc.identifierLavorato, Gabriel Carlos; Das, Raja; Xing, Yutao; Robles, Joshua; Litterst, F. Jochen; et al.; Origin and shell-driven optimization of the heating power in core/shell bimagnetic nanoparticles; American Chemical Society; ACS Applied Nano Materials; 3; 2; 29-1-2020; 1755-1765
dc.identifier2574-0970
dc.identifierhttp://hdl.handle.net/11336/141621
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4327020
dc.description.abstractThe magnetic properties of core/shell nanoparticles can be finely tuned through the exchange coupling at the interface, enabling large heating powers under alternating magnetic fields. However, the origin of their heating efficiency is still unclear due to the complex interplay of different heating mechanisms. Here, we show that monodisperse Fe3O4/CoxZn1-xFe2O4 core/shell nanoparticles can be designed to provide large heating powers for different field amplitudes and dispersion media conditions by modulating their shell composition and thickness. The fine control of the nanoparticles' effective anisotropy provided by the interface coupling between core and shell leads to values up to ∼2400 W g-1 for water colloids and ∼1000 W g-1 for immobilized particles at 80 mT and 309 kHz. A reduction in the shell thickness or Co/Zn ratio results in a transition from a viscous heating regime to a region governed by a collective behavior, characterized by chainlike formation due to interparticle interactions. These results shed light on the origin of the large heating powers of core/shell ferrites and provide an empirical guide to design highly efficient magnetic nanoheaters.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acsanm.9b02449
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsanm.9b02449
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCORE/SHELL NANOPARTICLES
dc.subjectINTERFACE EXCHANGE COUPLING
dc.subjectINTERPARTICLE INTERACTIONS
dc.subjectMAGNETIC ANISOTROPY
dc.subjectMAGNETIC HYPERTHERMIA
dc.subjectMAGNETIC NANOPARTICLES
dc.titleOrigin and shell-driven optimization of the heating power in core/shell bimagnetic nanoparticles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución