dc.creatorSmucler, Ezequiel
dc.creatorYohai, Victor Jaime
dc.date.accessioned2018-12-06T18:25:31Z
dc.date.accessioned2022-10-15T00:50:39Z
dc.date.available2018-12-06T18:25:31Z
dc.date.available2022-10-15T00:50:39Z
dc.date.created2018-12-06T18:25:31Z
dc.date.issued2017-07
dc.identifierSmucler, Ezequiel; Yohai, Victor Jaime; Robust and sparse estimators for linear regression models; Elsevier Science; Computational Statistics and Data Analysis; 111; 7-2017; 116-130
dc.identifier0167-9473
dc.identifierhttp://hdl.handle.net/11336/66002
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4326748
dc.description.abstractPenalized regression estimators are popular tools for the analysis of sparse and high-dimensional models. However, penalized regression estimators defined using an unbounded loss function can be very sensitive to the presence of outlying observations, especially to high leverage outliers. The robust and asymptotic properties of ℓ1-penalized MM-estimators and MM-estimators with an adaptive ℓ1 penalty are studied. For the case of a fixed number of covariates, the asymptotic distribution of the estimators is derived and it is proven that for the case of an adaptive ℓ1 penalty, the resulting estimator can have the oracle property. The advantages of the proposed estimators are demonstrated through an extensive simulation study and the analysis of real data sets. The proofs of the theoretical results are available in the Supplementary material to this article (see Appendix A).
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2017.02.002
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947317300221
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectLASSO
dc.subjectMM-ESTIMATORS
dc.subjectORACLE PROPERTY
dc.subjectROBUST REGRESSION
dc.subjectSPARSE LINEAR MODELS
dc.titleRobust and sparse estimators for linear regression models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución