dc.creatorCorbellini, Alejandro
dc.creatorGodoy, Daniela Lis
dc.creatorMateos Diaz, Cristian Maximiliano
dc.creatorSchiaffino, Silvia Noemi
dc.creatorZunino Suarez, Alejandro Octavio
dc.date.accessioned2019-11-29T19:54:52Z
dc.date.accessioned2022-10-15T00:49:33Z
dc.date.available2019-11-29T19:54:52Z
dc.date.available2022-10-15T00:49:33Z
dc.date.created2019-11-29T19:54:52Z
dc.date.issued2018-01
dc.identifierCorbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Schiaffino, Silvia Noemi; Zunino Suarez, Alejandro Octavio; DPM: A novel distributed large-scale social graph processing framework for link prediction algorithms; Elsevier Science; Future Generation Computer Systems; 78; 1-2018; 474-480
dc.identifier0167-739X
dc.identifierhttp://hdl.handle.net/11336/91017
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4326648
dc.description.abstractLarge-scale graphs have become ubiquitous in social media. Computer-based recommendations in these huge graphs pose challenges in terms of algorithm design and resource usage efficiency when processing recommendations in distributed computing environments. Moreover, recommendation algorithms for graphs, particularly link prediction algorithms, have different requirements depending of the way the underlying graph is traversed. Path-based algorithms usually perform traversals in different directions to build a large ranking of vertices to recommend, whereas random walk-based algorithms build an initial subgraph and perform several iterations on those vertices to compute the final ranking. In this work, we propose a distributed graph processing framework called Distributed Partitioned Merge (DPM), which supports both types of algorithms and we compare its performance and resource usage w.r.t. two relevant frameworks, namely Fork-Join and Pregel. In our experiments, we show that in most tests DPM outperforms both Pregel and Fork-Join in terms of recommendation time, with a minor penalization in network usage in some scenarios.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.future.2017.02.025
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167739X17302352
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDISTRIBUTED GRAPH PROCESSING
dc.subjectONLINE SOCIAL NETWORKS
dc.subjectRECOMMENDATION ALGORITHMS
dc.titleDPM: A novel distributed large-scale social graph processing framework for link prediction algorithms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución