dc.creatorMaestripieri, Alejandra Laura
dc.creatorMartinez Peria, Francisco Dardo
dc.date.accessioned2020-03-19T18:32:48Z
dc.date.accessioned2022-10-15T00:29:50Z
dc.date.available2020-03-19T18:32:48Z
dc.date.available2022-10-15T00:29:50Z
dc.date.created2020-03-19T18:32:48Z
dc.date.issued2007-12
dc.identifierMaestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Schur complements in Krein spaces; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 59; 2; 12-2007; 207-221
dc.identifier0378-620X
dc.identifierhttp://hdl.handle.net/11336/100306
dc.identifier1420-8989
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4324953
dc.description.abstractThe aim of this work is to generalize the notions of Schur complements and shorted operators to Krein spaces. Given a (bounded) J-selfadjoint operator A (with the unique factorization property) acting on a Krein space H and a suitable closed subspace S of H, the Schur complement A/[s]of A to S is defined. The basic properties of A/ are developed and different characterizations are given, most of them resembling those of the shorted of (bounded) positive operators on a Hilbert space.
dc.languageeng
dc.publisherBirkhauser Verlag Ag
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-007-1523-z
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00020-007-1523-z
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1809.01695
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectKREIN SPACES
dc.subjectSCHUR COMPLEMENT
dc.titleSchur complements in Krein spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución