dc.creatorCarando, Daniel Germán
dc.creatorDimant, Veronica Isabel
dc.creatorMuro, Luis Santiago Miguel
dc.date.accessioned2020-11-06T20:47:53Z
dc.date.accessioned2022-10-15T00:26:29Z
dc.date.available2020-11-06T20:47:53Z
dc.date.available2022-10-15T00:26:29Z
dc.date.created2020-11-06T20:47:53Z
dc.date.issued2007-12
dc.identifierCarando, Daniel Germán; Dimant, Veronica Isabel; Muro, Luis Santiago Miguel; Hypercyclic convolution operators on Fréchet spaces of analytic functions; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 336; 2; 12-2007; 1324-1340
dc.identifier0022-247X
dc.identifierhttp://hdl.handle.net/11336/117849
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4324662
dc.description.abstractA result of Godefroy and Shapiro states that the convolution operators on the space of entire functions on Cn, which are not multiples of identity, are hypercyclic. Analogues of this result have appeared for some spaces of holomorphic functions on a Banach space. In this work, we define the space holomorphic functions associated to a sequence of spaces of polynomials and determine conditions on this sequence that assure hypercyclicity of convolution operators. Some known results come out as particular cases of this setting. We also consider holomorphic functions associated to minimal ideals of polynomials and to polynomials of the Schatten-von Neumann class.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0022247X07003514
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jmaa.2007.03.055
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCONVOLUTION OPERATORS
dc.subjectHYPERCYCLIC OPERATORS
dc.subjectSPACES OF HOLOMORPHIC FUNCTIONS
dc.titleHypercyclic convolution operators on Fréchet spaces of analytic functions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución