dc.creator | Andruchow, Esteban | |
dc.creator | Varela, Alejandro | |
dc.date.accessioned | 2020-05-06T18:48:31Z | |
dc.date.accessioned | 2022-10-15T00:21:59Z | |
dc.date.available | 2020-05-06T18:48:31Z | |
dc.date.available | 2022-10-15T00:21:59Z | |
dc.date.created | 2020-05-06T18:48:31Z | |
dc.date.issued | 2005-11 | |
dc.identifier | Andruchow, Esteban; Varela, Alejandro; Riemannian geometry of finite rank positive operators; Elsevier Science; Differential Geometry and its Applications; 23; 1; 11-2005; 305-326 | |
dc.identifier | 0926-2245 | |
dc.identifier | http://hdl.handle.net/11336/104393 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4324248 | |
dc.description.abstract | A riemannian metric is introduced in the infinite dimensional manifold Σ_n of positive operators with rank n<∞ on a Hilbert space H. The geometry of this manifold is studied and related to the geometry of the submanifolds Σ_p$ of positive operators with range equal to the range of a projection p (rank of p =n), and P_p of selfadjoint projections in the connected component of p. It is shown that these spaces are complete in the geodesic distance. | |
dc.language | eng | |
dc.publisher | Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.difgeo.2005.06.004 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224505000604 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | POSITIVE OPERATOR | |
dc.subject | FINITE RANK PROJECTION | |
dc.title | Riemannian geometry of finite rank positive operators | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |