dc.creatorAndruchow, Esteban
dc.creatorVarela, Alejandro
dc.date.accessioned2020-05-06T18:48:31Z
dc.date.accessioned2022-10-15T00:21:59Z
dc.date.available2020-05-06T18:48:31Z
dc.date.available2022-10-15T00:21:59Z
dc.date.created2020-05-06T18:48:31Z
dc.date.issued2005-11
dc.identifierAndruchow, Esteban; Varela, Alejandro; Riemannian geometry of finite rank positive operators; Elsevier Science; Differential Geometry and its Applications; 23; 1; 11-2005; 305-326
dc.identifier0926-2245
dc.identifierhttp://hdl.handle.net/11336/104393
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4324248
dc.description.abstractA riemannian metric is introduced in the infinite dimensional manifold Σ_n of positive operators with rank n<∞ on a Hilbert space H.  The geometry of this manifold is studied and related to the geometry of the submanifolds Σ_p$ of positive operators with range equal to the range of a projection p (rank of p =n), and P_p of selfadjoint projections in the connected component of p. It is shown that these spaces are complete in the geodesic distance.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.difgeo.2005.06.004
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0926224505000604
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPOSITIVE OPERATOR
dc.subjectFINITE RANK PROJECTION
dc.titleRiemannian geometry of finite rank positive operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución