dc.creatorDi Scala, Antonio Jose'
dc.creatorOlmos, Carlos Enrique
dc.creatorVittone, Francisco
dc.date.accessioned2022-03-14T10:44:26Z
dc.date.accessioned2022-10-15T00:19:51Z
dc.date.available2022-03-14T10:44:26Z
dc.date.available2022-10-15T00:19:51Z
dc.date.created2022-03-14T10:44:26Z
dc.date.issued2021-10
dc.identifierDi Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco; Cones and Cartan geometry; Elsevier Science; Differential Geometry and its Applications; 78; 10-2021; 1-14
dc.identifier0926-2245
dc.identifierhttp://hdl.handle.net/11336/153301
dc.identifier1872-6984
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4324044
dc.description.abstractWe show that the extended principal bundle of a Cartan geometry of type (A(m,R),GL(m,R)), endowed with its extended connection ωˆ, is isomorphic to the principal A(m,R)-bundle of affine frames endowed with the affine connection as defined in classical Kobayashi-Nomizu volume I. Then we classify the local holonomy groups of the Cartan geometry canonically associated to a Riemannian manifold. It follows that if the holonomy group of the Cartan geometry canonically associated to a Riemannian manifold is compact then the Riemannian manifold is locally a product of cones.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224521000772
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.difgeo.2021.101793
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.09031
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectCARTAN GEOMETRY
dc.subjectAFFINE CONNECTION
dc.subjectCONES
dc.titleCones and Cartan geometry
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución