dc.creatorLutz , Peter Klotz
dc.creatorMedina, Juan Miguel
dc.date.accessioned2020-10-20T15:57:25Z
dc.date.accessioned2022-10-15T00:06:10Z
dc.date.available2020-10-20T15:57:25Z
dc.date.available2022-10-15T00:06:10Z
dc.date.created2020-10-20T15:57:25Z
dc.date.issued2020-08
dc.identifierLutz , Peter Klotz; Medina, Juan Miguel; Density in L2(µ) of certain families of functions on LCA groups related to the Multi-Channel sampling problem.; Taylor & Francis; Numerical Functional Analysis And Optimization; 41; 13; 8-2020; 1642-1665
dc.identifier0163-0563
dc.identifierhttp://hdl.handle.net/11336/116170
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4322815
dc.description.abstractLet G be an LCA group, H a closed subgroup, Γ the dual group of G and µ be a regular finite non-negative Borel measureonΓ. Motivated by the problem of sampling and reconstruction of a stationary random process over G from the values of m different linear measurements on H, we give some necessary or sufficient conditions for the density of certain sets of functions inL2(µ), which arise in multichannel sampling. Extensions of these results toLp(µ) , p≠ 2, and the existence of unconditional convergent expansions are discussed.
dc.languageeng
dc.publisherTaylor & Francis
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/01630563.2020.1798996
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/01630563.2020.1798996
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject42A10
dc.subject42C15
dc.subjectAPPROXIMATION THEORY
dc.subjectLCA GROUPS
dc.subjectPRIMARY: 42A65
dc.subjectSAMPLING
dc.subjectSECONDARY: 94A20
dc.subjectSTATIONARY RANDOM PROCESSES
dc.titleDensity in L2(µ) of certain families of functions on LCA groups related to the Multi-Channel sampling problem.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución