dc.creatorGalli, Vanesa Gisele
dc.creatorMolina, Sandra
dc.creatorQuintero, Alejandro
dc.date.accessioned2020-03-25T20:34:54Z
dc.date.accessioned2022-10-14T23:41:10Z
dc.date.available2020-03-25T20:34:54Z
dc.date.available2022-10-14T23:41:10Z
dc.date.created2020-03-25T20:34:54Z
dc.date.issued2018-05
dc.identifierGalli, Vanesa Gisele; Molina, Sandra; Quintero, Alejandro; A Liouville theorem for some Bessel generalized operators; Taylor & Francis Ltd; Integral Transforms And Special Functions; 29; 5; 5-2018; 367-383
dc.identifier1065-2469
dc.identifierhttp://hdl.handle.net/11336/100796
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4320588
dc.description.abstractIn this paper we establish a Liouville theorem in (Formula presented.) for a wider class of operators in (Formula presented.) that generalizes the n-dimensional Bessel operator. We will present two different proofs, based in two representation theorems for certain distributions ‘supported in zero’.
dc.languageeng
dc.publisherTaylor & Francis Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/10652469.2018.1441295
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/10652469.2018.1441295
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectBESSEL OPERATOR
dc.subjectHANKEL TRANSFORM
dc.subjectLIOUVILLE THEOREM
dc.titleA Liouville theorem for some Bessel generalized operators
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución