Argentina | info:eu-repo/semantics/article
dc.creatorGómez, Julián Luis
dc.creatorGelis, Lucía E. N.
dc.creatorVelis, Danilo Ruben
dc.date.accessioned2022-03-17T03:05:28Z
dc.date.accessioned2022-10-14T23:24:54Z
dc.date.available2022-03-17T03:05:28Z
dc.date.available2022-10-14T23:24:54Z
dc.date.created2022-03-17T03:05:28Z
dc.date.issued2021-12
dc.identifierGómez, Julián Luis; Gelis, Lucía E. N.; Velis, Danilo Ruben; Data-driven edge detectors for seismic data interpretation; Society of Exploration Geophysicists; Geophysics; 86; 6; 12-2021; 059-068
dc.identifier0016-8033
dc.identifierhttp://hdl.handle.net/11336/153476
dc.identifier1942-2156
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4319179
dc.description.abstractWe have developed a novel method to assist in seismic interpretation. The algorithm learns data-driven edge detectors for structure enhancement when applied to time slices of 3D poststack seismic data. We obtain the operators by distilling the local and structural information retrieved from patches taken randomly from the input time slices. The filters conform to an orthogonal family that behaves as structureaware Sobel-like edge detectors, and the user can set their size and number. The results from marine Canada and New Zealand 3D seismic data demonstrate that our algorithm allows the semblance attribute to improve the delineation of subsurface channels. This fact is further supported by testing the method with realistic synthetic 2D and 3D data sets containing channeling and meandering systems. We contrast the results with standard plain Sobel filtering, multidirectional Sobel filters of variable size, and the dip-oriented plane-wave destruction Sobel attribute. Our method gives results that are comparable or superior to those of Sobel-based approaches. In addition, the obtained filters can adapt to the geologic structures present in each time slice, which reduces the number of unwanted artifacts in the final product.
dc.languageeng
dc.publisherSociety of Exploration Geophysicists
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.geoscienceworld.org/geophysics/article/86/6/o59/608496/data-driven-edge-detectors-for-seismic-data
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1190/geo2020-0759.1
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectAlgorithm
dc.subjectFiltering
dc.subjectEdge detection
dc.titleData-driven edge detectors for seismic data interpretation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución