dc.creatorFlexer, Victoria
dc.creatorDonose, Bogdan C.
dc.creatorLefebvre, Camille
dc.creatorPozo, Guillermo
dc.creatorBoone, Matthieu N.
dc.creatorVan Hoorebeke, Luc
dc.creatorBaccour, Mohamed
dc.creatorBonnet, Laurent
dc.creatorCalas-Etienne, Sylvie
dc.creatorGalarneau, Anne
dc.creatorTitirici, Magdalena M.
dc.creatorBrun, Nicolas
dc.date.accessioned2019-12-04T19:38:11Z
dc.date.accessioned2022-10-14T23:24:11Z
dc.date.available2019-12-04T19:38:11Z
dc.date.available2022-10-14T23:24:11Z
dc.date.created2019-12-04T19:38:11Z
dc.date.issued2016-05
dc.identifierFlexer, Victoria; Donose, Bogdan C.; Lefebvre, Camille; Pozo, Guillermo; Boone, Matthieu N.; et al.; Microcellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors; American Chemical Society; ACS Sustainable Chemistry and Engineering; 4; 5; 5-2016; 2508-2516
dc.identifier2168-0485
dc.identifierhttp://hdl.handle.net/11336/91407
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4319121
dc.description.abstractA new monolithic carbonaceous material, 750-HMF-CarboHIPE, is presented here. The new electrode has been tested as an anode material inside a microbial bioelectrochemical system. In a purposely designed continuous flow bioelectrochemical reactor, the new material showed high biocompatibility, with a continuous biofilm development that remained bioelectrochemically active for over 6 months. A catalytic current of 1.56 mA cm-2/7.8 mA cm-3 (normalization by projected surface area and volumetric current) was reached. The current density was proportional to the flow rate. The new electrode material was synthesized using a high internal phase emulsion (HIPE) as a soft template to confine the polymerization and hydrothermal carbonization of two precursors derived from the cellulosic fraction of biomass and the bark of fruit trees: 5-hydroxymethylfurfural and phloroglucinol, respectively. Altogether, the sustainable synthetic route from biomass materials and the proposed application of oxidizing organic matter present in wastewater to produce electricity in a microbial fuel cell (MFC) close an interesting loop of prospective sustainable technology.
dc.languageeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acssuschemeng.5b01592
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acssuschemeng.5b01592
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectELECTROCHEMICALLY ACTIVE BIOFILM
dc.subjectELECTRODE MATERIAL
dc.subjectMICROBIAL BIOELECTROCHEMICAL SYSTEMS
dc.subjectMICROBIAL FUEL CELLS
dc.subjectPOROUS CARBONS
dc.titleMicrocellular Electrode Material for Microbial Bioelectrochemical Systems Synthesized by Hydrothermal Carbonization of Biomass Derived Precursors
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución