dc.creatorArrar, Mehrnoosh
dc.creatorBoubeta, Fernando Martín
dc.creatorSzretter Noste, María Eugenia
dc.creatorSued, Raquel Mariela
dc.creatorBoechi, Leonardo
dc.creatorRodriguez, Daniela
dc.date.accessioned2019-11-12T16:06:47Z
dc.date.accessioned2022-10-14T23:23:30Z
dc.date.available2019-11-12T16:06:47Z
dc.date.available2022-10-14T23:23:30Z
dc.date.created2019-11-12T16:06:47Z
dc.date.issued2019-02
dc.identifierArrar, Mehrnoosh; Boubeta, Fernando Martín; Szretter Noste, María Eugenia; Sued, Raquel Mariela; Boechi, Leonardo; et al.; On the accurate estimation of free energies using the jarzynski equality; John Wiley & Sons Inc; Journal Of Computational Chemistry; 40; 4; 2-2019; 688-696
dc.identifier0192-8651
dc.identifierhttp://hdl.handle.net/11336/88626
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4319052
dc.description.abstractThe Jarzynski equality is one of the most widely celebrated and scrutinized nonequilibrium work theorems, relating free energy to the external work performed in nonequilibrium transitions. In practice, the required ensemble average of the Boltzmann weights of infinite nonequilibrium transitions is estimated as a finite sample average, resulting in the so-called Jarzynski estimator, (Formula presented.). Alternatively, the second-order approximation of the Jarzynski equality, though seldom invoked, is exact for Gaussian distributions and gives rise to the Fluctuation-Dissipation estimator (Formula presented.). Here we derive the parametric maximum-likelihood estimator (MLE) of the free energy (Formula presented.) considering unidirectional work distributions belonging to Gaussian or Gamma families, and compare this estimator to (Formula presented.). We further consider bidirectional work distributions belonging to the same families, and compare the corresponding bidirectional (Formula presented.) to the Bennett acceptance ratio ((Formula presented.)) estimator. We show that, for Gaussian unidirectional work distributions, (Formula presented.) is in fact the parametric MLE of the free energy, and as such, the most efficient estimator for this statistical family. We observe that (Formula presented.) and (Formula presented.) perform better than (Formula presented.) and (Formula presented.), for unidirectional and bidirectional distributions, respectively. These results illustrate that the characterization of the underlying work distribution permits an optimal use of the Jarzynski equality.
dc.languageeng
dc.publisherJohn Wiley & Sons Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/jcc.25754
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.25754
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectFREE ENERGY
dc.subjectJARZYNSKI
dc.subjectMAXIMUM-LIKELIHOOD
dc.subjectSTEERED MOLECULAR DYNAMICS
dc.titleOn the accurate estimation of free energies using the jarzynski equality
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución