dc.creatorBonansea, Matias
dc.creatorRodriguez, Claudia
dc.creatorPinotti, Lucio Pedro
dc.creatorFerrero, Susana Beatriz
dc.date.accessioned2020-04-14T19:02:33Z
dc.date.accessioned2022-10-14T23:18:50Z
dc.date.available2020-04-14T19:02:33Z
dc.date.available2022-10-14T23:18:50Z
dc.date.created2020-04-14T19:02:33Z
dc.date.issued2015-03-01
dc.identifierBonansea, Matias; Rodriguez, Claudia; Pinotti, Lucio Pedro; Ferrero, Susana Beatriz; Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina); Elsevier Science Inc; Remote Sensing of Environment; 158; 1; 1-3-2015; 28-41
dc.identifier0034-4257
dc.identifierhttp://hdl.handle.net/11336/102510
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4318607
dc.description.abstractThe application of remote sensing technology to water quality monitoring has special significance for lake management at regional scales. Many studies have proposed algorithms between Landsat data and in-situ water quality parameters using classical regression models. The novelty of this paper is that we developed algorithms to determine log-transformed chlorophyll-a concentration (Chl-a) and Secchi disk transparency (SDT) in Río Tercero reservoir using Landsat TM and ETM+ imagery, ancillary environmental factors and linear mixed models (LMM), obtaining an increase in the accuracy of the estimates. The validation results showed that LMM with spatial correlation structure that take into account water surface temperature (WST) and rainfall were the most suitable method for estimating these parameters. WST derived from the Landsat thermal band was also validated. The algorithms were used to generate quantitative maps providing spatially and temporally rich information on patterns of water quality throughout the reservoir. Water quality features related to the hydrogeomorphology of the reservoir, typical seasonality and influx from the cooling system of a local nuclear reactor were identified in the time series maps.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0034425714004544
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.rse.2014.10.032
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectREMOTE SENSING
dc.subjectRESERVOIR
dc.subjectLANDSAT
dc.subjectWATER QUALITY
dc.subjectLINEAR MIXED MODELS
dc.subjectALGORITHMS
dc.titleUsing multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina)
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución