dc.creatorPérez Rodríguez, Michael
dc.creatorDirchwolf, Pamela Maia
dc.creatorRodríguez Negrín, Zenaida
dc.creatorPellerano, Roberto Gerardo
dc.date.accessioned2022-09-01T15:33:21Z
dc.date.accessioned2022-10-14T23:14:08Z
dc.date.available2022-09-01T15:33:21Z
dc.date.available2022-10-14T23:14:08Z
dc.date.created2022-09-01T15:33:21Z
dc.date.issued2021-03
dc.identifierPérez Rodríguez, Michael; Dirchwolf, Pamela Maia; Rodríguez Negrín, Zenaida; Pellerano, Roberto Gerardo; Assessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion; Elsevier; Food Chemistry; 339; 3-2021; 1-7
dc.identifier0308-8146
dc.identifierhttp://hdl.handle.net/11336/167201
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4318168
dc.description.abstractThe present work proposes to detect adulteration in rice flour using mineral profiles. Eighty-seven flour samples from two rice kinds (Indica and Japonica) plus thirty adulterated flour samples were analyzed by ICP OES. After obtaining the quantitative elemental fingerprint of the samples, PCA and LDA were applied. Binary and multiclass associations were considered to assess rice flour authenticity through fraud identification. Models based on element predictors showed accuracies ranging from 72 to 88% to distinguish adulterated and unadulterated samples. The fusion of the mineral features with the principal components (PCs) obtained from PCA provided classification rates of 100% in training samples, and 91–100% in test samples. The proposed method proved to be a useful tool for quality control in the rice industry since a perfect success rate was achieved for rice flour fraud detection.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814620319877
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.foodchem.2020.128125
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectADULTERATION
dc.subjectLDA
dc.subjectMINERAL PROFILES
dc.subjectPCA BASED DATA FUSION
dc.subjectRICE FLOUR
dc.titleAssessing mineral profiles for rice flour fraud detection by principal component analysis based data fusion
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución