dc.creatorPedrozo, Hector Alejandro
dc.creatorRodriguez Reartes, Sabrina Belen
dc.creatorBernal, David E.
dc.creatorVecchietti, Aldo
dc.creatorDíaz, María Soledad
dc.creatorGrossmann, Ignacio E.
dc.date.accessioned2021-09-14T16:08:43Z
dc.date.accessioned2022-10-14T23:13:06Z
dc.date.available2021-09-14T16:08:43Z
dc.date.available2022-10-14T23:13:06Z
dc.date.created2021-09-14T16:08:43Z
dc.date.issued2021-11
dc.identifierPedrozo, Hector Alejandro; Rodriguez Reartes, Sabrina Belen; Bernal, David E.; Vecchietti, Aldo; Díaz, María Soledad; et al.; Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 154; 11-2021; 1-73; 107473
dc.identifier0098-1354
dc.identifierhttp://hdl.handle.net/11336/140336
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4318063
dc.description.abstractWe propose a novel iterative procedure to generate hybrid models (HMs) within an optimization framework to solve design problems. HMs are based on first principle and surrogate models (SMs) and they may represent potential plant units embedded within a superstructure. We generate initial SMs with simple algebraic regression models and refine them by adding Gaussian Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after solving the optimal design problem, further domain exploitation, until the convergence criterion is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive Programming and solved with the Logic-based Outer Approximation algorithm. We addressed methanol synthesis and propylene plant design problems. Compared to rigorous model-based optimal design, the proposed HMs gave the same configuration, objective function and decision variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis shows that the proposed strategy reduced CPU time by 33 %.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0098135421002519
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compchemeng.2021.107473
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectGDP
dc.subjectHYBRID MODELS
dc.subjectLOGIC-BASED OUTER APPROXIMATION ALGORITHM
dc.subjectPROPYLENE PRODUCTION
dc.subjectSTATE EQUIPMENT NETWORK
dc.subjectSUPERSTRUCTURE OPTIMIZATION
dc.titleHybrid model generation for superstructure optimization with Generalized Disjunctive Programming
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución