dc.creatorGarcia Reiriz, Alejandro Gabriel
dc.creatorDamiani, Patricia Cecilia
dc.creatorCulzoni, Maria Julia
dc.creatorGoicoechea, Hector Casimiro
dc.creatorOlivieri, Alejandro Cesar
dc.date.accessioned2020-05-14T14:26:33Z
dc.date.accessioned2022-10-14T22:59:37Z
dc.date.available2020-05-14T14:26:33Z
dc.date.available2022-10-14T22:59:37Z
dc.date.created2020-05-14T14:26:33Z
dc.date.issued2008-05
dc.identifierGarcia Reiriz, Alejandro Gabriel; Damiani, Patricia Cecilia; Culzoni, Maria Julia; Goicoechea, Hector Casimiro; Olivieri, Alejandro Cesar; A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 92; 1; 5-2008; 61-70
dc.identifier0169-7439
dc.identifierhttp://hdl.handle.net/11336/105102
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4316832
dc.description.abstractSecond-order instrumental signals showing a non-linear behaviour with respect to analyte concentration can still be adequately processed in order to achieve the important second-order advantage. The combination of unfolded principal component analysis with residual bilinearization, followed by application of a variety of neural network models, allows one to obtain the second-order advantage. While principal component analysis models the training data, residual bilinearization models the contribution of the potential interferents which may be present in the test samples. Neural networks such as multilayer perceptron, radial basis functions and support vector machines, are all able to model the non-linear relationship between analyte concentrations and sample principal component scores. Three different experimental systems have been analyzed, all requiring the second-order advantage: 1) pH-UV absorbance matrices for the determination of two active principles in pharmaceutical preparations, 2) fluorescence excitation-emission matrices for the determination of polycyclic aromatic hydrocarbons, and 3) UV-induced fluorescence excitation-emission matrices for the determination of amoxicillin in the presence of salicylate. In all cases, reasonably accurate predictions can be made with the proposed techniques, which cannot be reached using traditional methods for processing second-order data.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2007.12.002
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169743907002377
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectSecond-order advantage
dc.subjectResidual bilinearization
dc.subjectMultilayer perceptron networks
dc.subjectRadial basis functions
dc.subjectSupport vector machines
dc.titleA versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución