dc.creatorSegura, Enrique Carlos
dc.date2005-12
dc.date2008-05-23T03:00:00Z
dc.identifierhttp://sedici.unlp.edu.ar/handle/10915/9590
dc.descriptionIn this paper a thermodynamic approach is presented to the problem of convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm for optimisation is considered as a simple evolution strategy with a control parameter allowing balance between the probability of obtaining an optimal or near-optimal solution and the time that the algorithm will take to reach equilibrium. This capacity is analysed and a theoretical frame is presented, stating a general condition to be fulfilled by an evolutionary algorithm in order to ensure its convergence to a global maximum of the fitness function.
dc.descriptionFacultad de Informática
dc.formatapplication/pdf
dc.format178-182
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc/3.0/
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.subjectCiencias Informáticas
dc.subjectevolutionary computation
dc.subjectsimulated annealing
dc.subjectthermodynamics of equilibrium
dc.subjectdetailed balance
dc.subjectergodicity
dc.titleEvolutionary computation with simulated annealing: conditions for optimal equilibrium distribution
dc.typeArticulo
dc.typeArticulo


Este ítem pertenece a la siguiente institución