dc.creatorPianzola, Arturo
dc.creatorStolin, Alexander
dc.date.accessioned2020-03-12T18:59:34Z
dc.date.accessioned2022-10-14T22:54:45Z
dc.date.available2020-03-12T18:59:34Z
dc.date.available2022-10-14T22:54:45Z
dc.date.created2020-03-12T18:59:34Z
dc.date.issued2018-04
dc.identifierPianzola, Arturo; Stolin, Alexander; Belavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations; Springer; Bulletin of Mathematical Sciences; 8; 1; 4-2018; 1-14
dc.identifier1664-3607
dc.identifierhttp://hdl.handle.net/11336/99307
dc.identifier1664-3615
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4316372
dc.description.abstractWe relate the Belavin–Drinfeld cohomologies (twisted and untwisted) that have been introduced in the literature to study certain families of quantum groups and Lie bialgebras over a non algebraically closed field K of characteristic 0 to the standard non-abelian Galois cohomology H1(K, H) for a suitable algebraic K-group H. The approach presented allows us to establish in full generality certain conjectures that were known to hold for the classical types of the split simple Lie algebras.
dc.languageeng
dc.publisherSpringer
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s13373-016-0094-1
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13373-016-0094-1
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBELAVIN–DRINFELD
dc.subjectGALOIS COHOMOLOGY
dc.subjectLIE BIALGEBRA
dc.subjectQUANTUM GROUP
dc.subjectYANG–BAXTER
dc.titleBelavin–Drinfeld solutions of the Yang–Baxter equation: Galois cohomology considerations
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución