dc.creatorColombo, Leonardo Jesus
dc.creatorEyrea Irazu, Maria Emma
dc.date.accessioned2022-01-18T17:28:18Z
dc.date.accessioned2022-10-14T22:54:24Z
dc.date.available2022-01-18T17:28:18Z
dc.date.available2022-10-14T22:54:24Z
dc.date.created2022-01-18T17:28:18Z
dc.date.issued2020-05
dc.identifierColombo, Leonardo Jesus; Eyrea Irazu, Maria Emma; Symmetries and periodic orbits in simple hybrid Routhian systems; Elsevier; Nonlinear Analysis: Hybrid Systems; 36; 5-2020; 1-33
dc.identifier1751-570X
dc.identifierhttp://hdl.handle.net/11336/150253
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4316352
dc.description.abstractSymmetries are ubiquitous in a wide range of nonlinear systems. Particularly in systems whose dynamics is determined by a Lagrangian or Hamiltonian function. For hybrid systems which possess a continuous-time dynamics determined by a Lagrangian function, with a cyclic variable, the degrees of freedom for the corresponding hybrid Lagrangian system can be reduced by means of a method known as hybrid Routhian reduction. In this paper we study sufficient conditions for the existence of periodic orbits in hybrid Routhian systems which also exhibit a time-reversal symmetry. Likewise, we explore some stability aspects of such orbits through the characterization of the eigenvalues for the corresponding linearized Poincaré map. Finally, we apply the results to find periodic solutions in underactuated hybrid Routhian control systems.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.nahs.2020.100857
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1751570X20300042
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectHYBRID SYSTEMS
dc.subjectPOINCARÉ MAP
dc.subjectROUTH REDUCTION
dc.subjectSYMMETRIES
dc.titleSymmetries and periodic orbits in simple hybrid Routhian systems
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución