dc.creatorVerdú Faraco, José Ramón
dc.creatorCortez, Vieyle
dc.creatorOliva, Daniela
dc.creatorGimenez Gomez, Victoria Carolina
dc.date.accessioned2020-11-06T16:12:12Z
dc.date.accessioned2022-10-14T22:52:34Z
dc.date.available2020-11-06T16:12:12Z
dc.date.available2022-10-14T22:52:34Z
dc.date.created2020-11-06T16:12:12Z
dc.date.issued2019-10
dc.identifierVerdú Faraco, José Ramón; Cortez, Vieyle; Oliva, Daniela; Gimenez Gomez, Victoria Carolina; Thermoregulatory syndromes of two sympatric dung beetles with low energy costs; Pergamon-Elsevier Science Ltd; Journal of Insect Physiology; 118; 10-2019; 1-9
dc.identifier0022-1910
dc.identifierhttp://hdl.handle.net/11336/117807
dc.identifier0022-1910
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4316192
dc.description.abstractIn heterotherm insects, endothermy implies a high energy cost due to the generation and regulation of body temperature during different activities such as flight, food location, fighting and even walking. We studied the thermoregulation process and the cost of the thermoregulation strategies in two sympatric dung beetles, Sulcophanaeus batesi and S. imperator under heat and cold stress conditions. We used a set of physiological variables to exemplify the capacity of thermolimit respirometry combined with infrared thermography to derive relevant variables capable of describing different thermoregulation syndromes. Habitat use and thermal niche differed notably between S. batesi and S. imperator, reflecting their contrasted thermal requirements. In S. imperator, thermal specialization for high temperatures was observed, being active mainly during the warmer period of the day. On the other hand, thermal adaptation in S. batesi allows its preference for cold exhibiting a morning activity periods, avoiding higher temperatures. The thermophilic strategy used by Sulcophanaeus imperator minimized the energy expenditure produced during the cooling of the body by respiration without thereby endangering higher thermal limits. In this case, S. batesi, the species with a preference for the coldest environments, presented the lowest thermal limits, although the energy cost needed to stay active during cooling was significantly lower than that in S. imperator. Sulcophanaeus imperator and S. batesi showed evident ‘economizing’ strategies associated with hot and cold environmental conditions, respectively. In contrast, if both species experience a deviation from their thermal optimum, a decrement in their performance could be produced.
dc.languageeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jinsphys.2019.103945
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S002219101930201X?via%3Dihub
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectCOST OF THERMOREGULATION
dc.subjectECOPHYSIOLOGICAL SYNDROMES
dc.subjectMETABOLIC RATE
dc.subjectMICROHABITAT SELECTION
dc.subjectSCARABAEIDAE
dc.subjectTHERMAL STRESS
dc.titleThermoregulatory syndromes of two sympatric dung beetles with low energy costs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución