dc.creatorCorach, Gustavo
dc.creatorMaestripieri, Alejandra Laura
dc.creatorStojanoff, Demetrio
dc.date.accessioned2020-07-16T20:48:35Z
dc.date.accessioned2022-10-14T22:46:16Z
dc.date.available2020-07-16T20:48:35Z
dc.date.available2022-10-14T22:46:16Z
dc.date.created2020-07-16T20:48:35Z
dc.date.issued2002-01
dc.identifierCorach, Gustavo; Maestripieri, Alejandra Laura; Stojanoff, Demetrio; Generalized Schur complements and oblique projections; Elsevier Science Inc; Linear Algebra and its Applications; 341; 1-3; 1-2002; 259-272
dc.identifier0024-3795
dc.identifierhttp://hdl.handle.net/11336/109494
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4315626
dc.description.abstractLet S be a closed subspace of a Hilbert space H and A a bounded linear selfadjoint operator on H. In this note, we show that the existence of A -selfadjoint projections with range S is related to some properties of shorted operators, Schur complements (in Ando's generalization of the classical concept) and compressions.
dc.languageeng
dc.publisherElsevier Science Inc
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379501003846
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/S0024-3795(01)00384-6
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOBLIQUE PROJECTION
dc.subjectSCHUR COMPLEMENT
dc.subjectCOMPLEMENTABLE MATRIX
dc.subjectSHORTED OPERATOR
dc.titleGeneralized Schur complements and oblique projections
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución