dc.creator | Aimar, Hugo Alejandro | |
dc.creator | Bernardis, Ana Lucia | |
dc.creator | Nowak, Luis Maria Ricardo | |
dc.date.accessioned | 2020-07-26T14:34:57Z | |
dc.date.accessioned | 2022-10-14T22:46:02Z | |
dc.date.available | 2020-07-26T14:34:57Z | |
dc.date.available | 2022-10-14T22:46:02Z | |
dc.date.created | 2020-07-26T14:34:57Z | |
dc.date.issued | 2011-04 | |
dc.identifier | Aimar, Hugo Alejandro; Bernardis, Ana Lucia; Nowak, Luis Maria Ricardo; Equivalence of Haar Bases Associated with Different Dyadic Systems; Springer; The Journal Of Geometric Analysis; 21; 2; 4-2011; 288-304 | |
dc.identifier | 1050-6926 | |
dc.identifier | http://hdl.handle.net/11336/110280 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4315600 | |
dc.description.abstract | In this note we give sufficient conditions on two dyadic systemson a space of homogeneous type in order to obtain the equivalence of corre-sponding Haar systems on Lebesgue spaces. The main tool is the vector valuedFe erman-Stein inequality for the Hardy-Littlewood maximal operator. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12220-010-9148-x | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject | HAAR BASIS | |
dc.subject | EQUIVALENCE OF BASES | |
dc.subject | SPACE OF HOMOGENEOUS TYPE | |
dc.title | Equivalence of Haar Bases Associated with Different Dyadic Systems | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |