dc.creatorGalicer, Daniel Eric
dc.creatorMerzbacher, Diego Mariano
dc.creatorPinasco, Damian
dc.date.accessioned2022-04-08T21:56:16Z
dc.date.accessioned2022-10-14T22:42:56Z
dc.date.available2022-04-08T21:56:16Z
dc.date.available2022-10-14T22:42:56Z
dc.date.created2022-04-08T21:56:16Z
dc.date.issued2021-03
dc.identifierGalicer, Daniel Eric; Merzbacher, Diego Mariano; Pinasco, Damian; Asymptotic estimates for the largest volume ratio of a convex body; European Mathematical Society; Revista Matematica Iberoamericana; 37; 6; 3-2021; 1-26
dc.identifier0213-2230
dc.identifierhttp://hdl.handle.net/11336/154848
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4315306
dc.description.abstractThe largest volume ratio of a given convex body K ⊂ Rn is defined as lvr(K) := sup L⊂Rn vr(K, L), where the sup runs over all the convex bodies L. We prove the following sharp lower bound: c √n ≤ lvr(K), for every body K (where c > 0 is an absolute constant). This result improves the former best known lower bound, of order n/log log(n). We also study the exact asymptotic behaviour of the largest volume ratio for some natural classes. In particular, we show that lvr(K) behaves as the square root of the dimension of the ambient space in the following cases: if K is the unit ball of an unitary invariant norm in Rd×d (e.g., the unit ball of the p-Schatten class Sd p for any 1 ≤ p ≤ ∞), if K is the unit ball of the full/symmetric tensor product of p-spaces endowed with the projective or injective norm, or if K is unconditional.
dc.languageeng
dc.publisherEuropean Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0213-2230&vol=37&iss=6&rank=9
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4171/rmi/1263
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1901.00771
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48550/arXiv.1901.00771
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectVOLUME RATIO
dc.subjectRANDOM POLYTOPES
dc.subjectUNCONDITIONAL CONVEX BODIES
dc.subjectSCHATTEN CLASES
dc.titleAsymptotic estimates for the largest volume ratio of a convex body
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución