dc.creatorLopes, Samuel
dc.creatorSolotar, Andrea Leonor
dc.date.accessioned2022-08-29T15:45:22Z
dc.date.accessioned2022-10-14T22:30:19Z
dc.date.available2022-08-29T15:45:22Z
dc.date.available2022-10-14T22:30:19Z
dc.date.created2022-08-29T15:45:22Z
dc.date.issued2021-12-07
dc.identifierLopes, Samuel; Solotar, Andrea Leonor; Lie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra; European Mathematical Society; Journal of Noncommutative Geometry; 15; 4; 7-12-2021; 1373-1407
dc.identifier1661-6952
dc.identifierhttp://hdl.handle.net/11336/166833
dc.identifier1661-6960
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4314200
dc.description.abstractFor each nonzero h ∈ F[x], where F is a field, let Ah be the unital associative algebra generated by elements x; y, satisfying the relation yx - xy = h. This gives a parametric family of subalgebras of the Weyl algebra A1, containing many well-known algebras which have previously been studied independently. In this paper, we give a full description of the Hochschild cohomology HH·(Ah) over a field of an arbitrary characteristic. In case F has a positive characteristic, the center Z(Ah) of Ah is nontrivial and we describe HH·(Ah) as a module over Z.(Ah). The most interesting results occur when F has a characteristic 0. In this case, we describe HH·(Ah) as a module over the Lie algebra HH1(Ah) and find that this action is closely related to the intermediate series modules over the Virasoro algebra. We also determine when HH·(Ah) is a semisimple HH1.Ah/-module.
dc.languageeng
dc.publisherEuropean Mathematical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.4171/jncg/439
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/3731350
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectGERSTENHABER BRACKET
dc.subjectHOCHSCHILD COHOMOLOGY
dc.subjectORE EXTENSION
dc.subjectWEYL ALGEBRA
dc.subjectWITT ALGEBRA
dc.titleLie structure on the Hochschild cohomology of a family of subalgebras of the Weyl algebra
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución