dc.creatorPérez Rodríguez, Michael
dc.creatorGaiad, José Emilio
dc.creatorHidalgo, Melisa Jazmin
dc.creatorAvanza, María Victoria
dc.creatorPellerano, Roberto Gerardo
dc.date.accessioned2021-04-23T13:03:09Z
dc.date.accessioned2022-10-14T22:28:14Z
dc.date.available2021-04-23T13:03:09Z
dc.date.available2022-10-14T22:28:14Z
dc.date.created2021-04-23T13:03:09Z
dc.date.issued2019-01
dc.identifierPérez Rodríguez, Michael; Gaiad, José Emilio; Hidalgo, Melisa Jazmin; Avanza, María Victoria; Pellerano, Roberto Gerardo; Classification of cowpea beans using multielemental fingerprinting combined with supervised learning; Elsevier; Food Control; 95; 1-2019; 232-241
dc.identifier0956-7135
dc.identifierhttp://hdl.handle.net/11336/130760
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4313994
dc.description.abstractMultielemental compositions (Ag, As, Ba, Be, Cd, Cs, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, Rb, V, and Zn) of 106 cowpea bean samples belonging to different varieties collected from the province of Corrientes in Argentina were determined using inductively coupled plasma mass spectrometry (ICP-MS). Based on the multielemental data, five supervised learning techniques, namely, linear discriminant analysis (LDA), partial least square discriminant analysis (PLS-DA), k nearest neighbors (k-NN), random forest (RF), and support vector machine (SVM) with radial basis function Kernel, were computed aiming at building classification models that allow one to predict the botanical variety of the samples based on their element profiles. The best classification performance was obtained by SVM with 93% accuracy rate. The model developed through this method enabled the correct separation of the samples into the five cowpea varieties investigated, where 100% sensitivity was achieved for most of the predicted classes. Thus, SVM was the algorithm selected for the classification of the cowpea beans according to their botanical variety. Multielemental determination coupled with supervised pattern recognition techniques have proved to be an interesting approach for differentiating a diverse range of cowpea genotypes. This study has contributed toward generalizing the use of multielemental fingerprinting as a promising tool for testing the authenticity of cowpea beans on a global scale.
dc.languageeng
dc.publisherElsevier
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0956713518303955
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.foodcont.2018.08.001
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAUTHENTICITY
dc.subjectCOWPEA BEAN
dc.subjectGENOTYPE
dc.subjectICP-MS
dc.subjectMULTIELEMENTAL FINGERPRINTING
dc.subjectSUPERVISED LEARNING
dc.titleClassification of cowpea beans using multielemental fingerprinting combined with supervised learning
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución