dc.creatorGallego, Claudia
dc.creatorSolotar, Andrea Leonor
dc.date.accessioned2021-07-19T12:42:56Z
dc.date.accessioned2022-10-14T22:23:15Z
dc.date.available2021-07-19T12:42:56Z
dc.date.available2022-10-14T22:23:15Z
dc.date.created2021-07-19T12:42:56Z
dc.date.issued2019-05
dc.identifierGallego, Claudia; Solotar, Andrea Leonor; Stable rank of down-up algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 526; 5-2019; 266-282
dc.identifier0021-8693
dc.identifierhttp://hdl.handle.net/11336/136396
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4313534
dc.description.abstractWe investigate the behavior of finitely generated projective modules over a down-up algebra. Specifically, we show that every noetherian down-up algebra A(α,β,γ) has a non-free, stably free right ideal. Further, we compute the stable rank of these algebras using Stafford's Stable Range Theorem and Kmax dimension.
dc.languageeng
dc.publisherAcademic Press Inc Elsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0021869318301959?via%3Dihub
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.jalgebra.2018.02.037
dc.relationinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1707.06687
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDOWN-UP ALGEBRAS
dc.subjectKMAX DIMENSION
dc.subjectKRULL DIMENSION
dc.subjectPROJECTIVE MODULES
dc.subjectSTABLE RANK
dc.subjectSTABLY FREE MODULES
dc.titleStable rank of down-up algebras
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución