dc.creatorCortiñas, Guillermo Horacio
dc.creatorRodríguez, María Eugenia
dc.date.accessioned2019-11-15T14:59:20Z
dc.date.accessioned2022-10-14T22:16:10Z
dc.date.available2019-11-15T14:59:20Z
dc.date.available2022-10-14T22:16:10Z
dc.date.created2019-11-15T14:59:20Z
dc.date.issued2018-04
dc.identifierCortiñas, Guillermo Horacio; Rodríguez, María Eugenia; Lp-operator algebras associated with oriented graphs; Theta Foundation; Journal Of Operator Theory; 81; 1; 4-2018; 225-254
dc.identifier0379-4024
dc.identifierhttp://hdl.handle.net/11336/89052
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4312933
dc.description.abstractFor each 1 ≤ p < ∞ and each countable oriented graph Q we introduce an L p -operator algebra O p (Q) which contains the Leavitt path C-algebra LQ as a dense subalgebra and is universal for those L p -representations of LQ which are spatial in the sense of N.C. Phillips. For Rn the graph with one vertex and n loops (2 ≤ n ≤ ∞), O p (Rn) = O p n , the L p -Cuntz algebra introduced by Phillips. If p < {1, 2} and S(Q) is the inverse semigroup generated by Q, O p (Q) = F p tight(S(Q)) is the tight semigroup L p -operator algebra introduced by Gardella and Lupini. We prove that O p (Q) is simple as an L p -operator algebra if and only if LQ is simple, and that in this case it is isometrically isomorphic to the closure ρ(LQ) of the image of any nonzero spatial L p -representation ρ : LQ → L(L p (X)). We also show that if LQ is purely infinite simple and p , p ′ , then there is no nonzero continuous homomorphism O p (Q) → Op ′ (Q). Our results generalize some similar results obtained by Phillips for L p -Cuntz algebras.
dc.languageeng
dc.publisherTheta Foundation
dc.relationinfo:eu-repo/semantics/altIdentifier/url/http://www.theta.ro/jot/archive/2019-081-001/index_2019-081-001.html
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectL^p-operator algebras
dc.subjectGraph algebras
dc.subjectSimplicity and uniqueness theorems
dc.titleLp-operator algebras associated with oriented graphs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución