dc.creatorPascucci, Bruno
dc.creatorOtero, Guadalupe Sol
dc.creatorBelelli, Patricia Gabriela
dc.creatorBranda, Maria Marta
dc.date.accessioned2020-08-10T18:37:55Z
dc.date.accessioned2022-10-14T22:15:08Z
dc.date.available2020-08-10T18:37:55Z
dc.date.available2022-10-14T22:15:08Z
dc.date.created2020-08-10T18:37:55Z
dc.date.issued2019-09-30
dc.identifierPascucci, Bruno; Otero, Guadalupe Sol; Belelli, Patricia Gabriela; Branda, Maria Marta; Understanding the effects of metal particle size on the NO2 reduction from a DFT study; Elsevier Science; Applied Surface Science; 489; 30-9-2019; 1019-1029
dc.identifier0169-4332
dc.identifierhttp://hdl.handle.net/11336/111333
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4312826
dc.description.abstractThe study of the effect of particle size and low coordination sites in metal nanoparticles (Cun, Agn and Aun with n = 19, 38, 55, 79 and 116) on the reduction of NO2 to NO + O, was carried out using density functional theory (DFT) calculations. All metal nanoparticles have shown to be more favorable for the NO2 adsorption than the (111) extended surfaces. The adsorption energy order of NO2 found for both configurations, O-down (most stable) and N-down, was Cu > Ag > Au. The dissociation energy values of NO2 on Cu and Ag nanoparticles decrease with the increment of the particle size, however, considering the activation barrier values, the most reactive substrates evaluated were Cu(111) surface, and the Cu19, Cu116. The activation barriers (Eact) for the larger nanoparticles, were obtained using a non-traditional relationship of Brönsted Evans Polanyi (BEP), from the Eact calculated on the smaller ones. The BEP relations highly depend on the reaction product configurations and also on the structure of the active site. Notwithstanding that the nanoparticles improve the NO2 adsorption and the dissociation energies are lower than those corresponding to the extended surfaces, the activation barriers are higher.
dc.languageeng
dc.publisherElsevier Science
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.apsusc.2019.05.318
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0169433219316381
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subjectDFT
dc.subjectREDUCTION
dc.subjectNANOPARTICLES
dc.subjectADSORPTION
dc.subjectCu
dc.subjectAg
dc.subjectAu
dc.subjectNO2
dc.titleUnderstanding the effects of metal particle size on the NO2 reduction from a DFT study
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución