dc.creator | Young, Steven H. | |
dc.creator | Rey, Osvaldo | |
dc.creator | Rozengurt, Enrique | |
dc.date.accessioned | 2020-01-16T18:16:04Z | |
dc.date.accessioned | 2022-10-14T22:12:55Z | |
dc.date.available | 2020-01-16T18:16:04Z | |
dc.date.available | 2022-10-14T22:12:55Z | |
dc.date.created | 2020-01-16T18:16:04Z | |
dc.date.issued | 2015-11 | |
dc.identifier | Young, Steven H.; Rey, Osvaldo; Rozengurt, Enrique; Intracellular Ca2+ oscillations generated via the extracellular Ca2+-sensing receptor (CaSR) in response to extracellular Ca2+ or l-phenylalanine: Impact of the highly conservative mutation Ser170Thr; Academic Press Inc Elsevier Science; Biochemical and Biophysical Research Communications; 467; 1; 11-2015; 1-6 | |
dc.identifier | 0006-291X | |
dc.identifier | http://hdl.handle.net/11336/94909 | |
dc.identifier | CONICET Digital | |
dc.identifier | CONICET | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/4312618 | |
dc.description.abstract | The extracellular Ca2+-sensing receptor (CaSR) is an allosteric protein that responds to changes in the extracellular concentration of Ca2+ ([Ca2+]e) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca2+ concentration ([Ca2+]i). An increase in [Ca2+]e stimulates sinusoidal oscillations in [Ca2+]i whereas aromatic amino acid-induced CaR activation in the presence of a threshold [Ca2+]e promotes transient oscillations in [Ca2+]i. Here, we examined spontaneous and ligand-evoked [Ca2+]i oscillations in single HEK-293 cells transfected with the wild type CaSR or with a mutant CaSR in which Ser170 was converted to Thr (CaSRS170T). Our analysis demonstrates that cells expressing CaSRS170T display [Ca2+]i oscillations in the presence of low concentrations of extracellular Ca2+ and respond to L-Phe with robust transient [Ca2+]i oscillations. Our results indicate that the S170T mutation induces a marked increase in CaSR sensitivity to [Ca2+]e and imply that the allosteric regulation of the CaSR by aromatic amino acids is not only mediated by an heterotropic positive effect on Ca2+ binding cooperativity but, as biased agonists, aromatic amino acids stabilize a CaSR conformation that couples to a different signaling pathway leading to transient [Ca2+]i oscillations. | |
dc.language | eng | |
dc.publisher | Academic Press Inc Elsevier Science | |
dc.relation | info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.bbrc.2015.09.144 | |
dc.relation | info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0006291X15306604 | |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Calcium sensing receptor | |
dc.subject | GPCR | |
dc.subject | Calcium oscillations | |
dc.subject | signal transduction | |
dc.title | Intracellular Ca2+ oscillations generated via the extracellular Ca2+-sensing receptor (CaSR) in response to extracellular Ca2+ or l-phenylalanine: Impact of the highly conservative mutation Ser170Thr | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:ar-repo/semantics/artículo | |
dc.type | info:eu-repo/semantics/publishedVersion | |