dc.creatorHernández Lahme, Damián Gabriel
dc.creatorSamengo, Ines
dc.date.accessioned2021-01-05T13:22:37Z
dc.date.accessioned2022-10-14T21:53:51Z
dc.date.available2021-01-05T13:22:37Z
dc.date.available2022-10-14T21:53:51Z
dc.date.created2021-01-05T13:22:37Z
dc.date.issued2019-06
dc.identifierHernández Lahme, Damián Gabriel; Samengo, Ines; Estimating the mutual information between two discrete, asymmetric variables with limited samples; Molecular Diversity Preservation International; Entropy; 21; 6; 6-2019; 1-20
dc.identifierhttp://hdl.handle.net/11336/121475
dc.identifier1099-4300
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4310878
dc.description.abstractDetermining the strength of nonlinear, statistical dependencies between two variables is a crucial matter in many research fields. The established measure for quantifying such relations is the mutual information. However, estimating mutual information from limited samples is a challenging task. Since the mutual information is the difference of two entropies, the existing Bayesian estimators of entropy may be used to estimate information. This procedure, however, is still biased in the severely under-sampled regime. Here, we propose an alternative estimator that is applicable to those cases in which the marginal distribution of one of the two variables?the one with minimal entropy?is well sampled. The other variable, as well as the joint and conditional distributions, can be severely undersampled. We obtain a consistent estimator that presents very low bias, outperforming previous methods even when the sampled data contain few coincidences. As with other Bayesian estimators, our proposal focuses on the strength of the interaction between the two variables, without seeking to model the specific way in which they are related. A distinctive property of our method is that the main data statistics determining the amount of mutual information is the inhomogeneity of the conditional distribution of the low-entropy variable in those states in which the large-entropy variable registers coincidences.
dc.languageeng
dc.publisherMolecular Diversity Preservation International
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/21/6/623
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.3390/e21060623
dc.rightshttps://creativecommons.org/licenses/by/2.5/ar/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBAYESIAN ESTIMATION
dc.subjectMUTUAL INFORMATION
dc.subjectBIAS
dc.subjectSAMPLING
dc.titleEstimating the mutual information between two discrete, asymmetric variables with limited samples
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:ar-repo/semantics/artículo
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución