dc.creatorZilberstein, Nicolás Martín
dc.creatorCernuschi Frias, Bruno
dc.date.accessioned2022-05-11T02:55:48Z
dc.date.accessioned2022-10-14T21:32:45Z
dc.date.available2022-05-11T02:55:48Z
dc.date.available2022-10-14T21:32:45Z
dc.date.created2022-05-11T02:55:48Z
dc.date.issued2018
dc.identifierParticle filter with unknown noise statistics and with prior knowledge; 2018 Argentine Conference on Automatic Control; Buenos Aires; Argentina; 2018; 1-6
dc.identifier978-9-8746-8590-2
dc.identifierhttp://hdl.handle.net/11336/157154
dc.identifierCONICET Digital
dc.identifierCONICET
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/4309064
dc.description.abstractParticle filters have been widely used as a solution to the Bayesian filtering problem, propagating in time a Monte Carlo (MC) approximation of the a posteriori filtering measure. In many situations, the exact statistics of the noises is not known, but some prior information is available. We consider here the estimation of the noise parameters by sampling from the a posteriori distribution of the unknown parameters given the measure data incorporated to the prior information using the Metropolis-Hastings MCMC algorithm. In order to compute the likelihood function, which is needed in the MCMC algorithm to sample from the a posteriori distribution, a factor-graph based approach is used.
dc.languageeng
dc.publisherAsociación Argentina de Control Automático
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.23919/AADECA.2018.8577376
dc.relationinfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8577376
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.source2018 Argentine Conference on Automatic Control (AADECA)
dc.subjectPARTICLE FILTER
dc.subjectUNKNOWN NOISE
dc.subjectPRIOR KNOWLEDGE
dc.subjectMCMC
dc.subjectFACTOR GRAPH
dc.titleParticle filter with unknown noise statistics and with prior knowledge
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.typeinfo:ar-repo/semantics/documento de conferencia


Este ítem pertenece a la siguiente institución